
AD-A209 881 ION 60GE ACCESSION N- 3 RII ilSCAAD iii

-~~~~S * I.~~'r YPE 0r APD3' & Pi!"DO) CODVD

Ada Compiler Validation Summary Report: Verdix 16 Feb. 1989 to 16 Feb. 1990
Corporation, VAda-110-2323, Version 5.5, Sequent Bal-ance PLF Ni~hJj

8000 (Host and Target), 890216W1.10029

7. AUINORis) 8.CbfA1OR &RA61. hi"EiRij)

Wrfg-rt-Patterson AFB
Dayton, OH, LISA

I. PLRF0RKNM1 fCANZATIOh AN~D ADDRELSS 20. PRDCDPAl ELIMEN1. PA ." 1ASK

Wright-Patterson AFB
AE OkU: iiR

Dayton, 0H, USA

12. CONIAC.LING OrFICE NAW. ANmD ADDRESS 12. REPORI DOE
Ada Joint Program Office
United StatesCDe artinent of Defense 13 %jCKu AL
W'ashington, DC 2 30 1-3081

14. moN1rOR~k& ArEN:Y NAO & ADDRESS(Ifdiierenrtfrom Controuling office) 16. SECLA1 CbLASS gf:hijrporn)

Wright-Patterson AFB UN. CLASFE

Dayton, OH, USA N/

16. 01SIR18JIU04 STAIEUKhI (ofthsepor)

Approved for public release; distribution unlimited.

19. KE'fWORS (Continue on, reverse s'd if IAceLsso)en ~dde'ntfy by blotA ,nmber)

Ada Procra~.r.g language, Ada Compiler Validation Surr ary Repcrt , Ada
CoMpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/'.lL-S7D-
1815A, Ada Joint Program Office, AJPO

20. AESTAA1l (Cotofnue On~ reverse idt iflnecessary aniden~t by block num~ber)

Ver-dix Corporation, VAda-11O-2323, Version 5.5, Wright-Patterson AFB, Sequent Balance

8000 under Sequent Dynix,.Release 3.0.4 (Host and Target), ACVC 1.10.

D K 1473 ELO101Of DI NO bS 6 15 OBSOLEIE
I JAN 73 S/Ai22-U04-ED UNCLA'SSIFIID

Ada Compiler Validation Summary Report:

Compiler Name: VAda-110-2323, Version 5.5

Certificate Number: 890216W1.10029

Host: Sequent Balance 8000 under
Sequent Dynix, Release 3.0.4

Target: Sequent Balance 8000 under
Sequent Dynix, Release 3.0.4

Testing Completed 16 Feb 1989 Using ACVC 1.10

This repor reviewed and is approved.

Ada Validation Facility AcoesSion For
Steve P. Wilson NTIS GRA&I
Technical Director DTIC TAB
ASD/SCEL Unarnnouncud d
Wright-Patterson AFB OH 45433-6503 Justif ic. ..

" ~~~~~ ~ i str AviI::L . d-

Ada Validation Organization By__._--_. . 1
Dr. John F. Kramer Dist L -

Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director, AJPO ISrEc"

Department of Defense 6

Washington DC 20301

AVF Control Number: AVF-VSR-235.0589
88-12-14-VRX

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890216W1.10029
Verdix Corporation

VAda-110-2323, Version 5.5
Sequent Balance 8000

Completion of On-Site Testing:
16 Feb 1989

Prepared By:
Ada Validation Facility

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: VAda-110-2323, Version 5.5

Certificate Number: 890216W1.10029

Host: Sequent Balance 8000 under
Sequent Dynix, Release 3.0.4

Target: Sequent Balance 8000 under
Sequent Dynix, Release 3.0.4

Testing Completed 16 Feb 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Dr. John F. Kramer

Ada Joint Program Office
Dr. John Solomond
Director, AJPO
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .. . 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS: 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS.. 3-5
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidation3-5
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Reportk{VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1 815A.
This report explains all technical terms used within it and thoroughly
reports the results or I-estIng this compiler using the Ada Compiler
Validation Capability, (AGVC)P An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
giSven in this report.>

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. -The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-I

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

'his VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 16 Feb 1989 at Aloha OR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTe.n,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE resultz. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by tho Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK-FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
cus~c-,ized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: VAda-110-2323, Version 5.5

ACVC Version: 1.10

Certificate Number: 890216W1.10029

Host Computer:

Machine: Sequent Balance 8000

Operating System: Sequent Dynix
Release 3.0.4

Memory Size: 4 Megabytes

Target Computer:

Machine: Sequent Balance 8000

Operating System: Sequent Dynix
Release 3.0.4

Memory Size: 4 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY INTEGER, SHORTINTEGER, and SHORT FLOAT in package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.

(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C41AO4A.)

e. Array types.

An implementation is allowed to raise NUMERICERRO' or

CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null

array Type with INTEGER'LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array Type with SYSTEM.MAX INT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) :n the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical

bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

2-4

CCNFIGURATION INFORMATION

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1Oi2A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Gineric unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

J. Input and output

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes INFILE and OUTFILE are supported for SEQUENTIALIO.

(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes INFILE, OUTFILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE31O2E and CE3702I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIALIO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

2-5

CONFIGURATION INFORMATION

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when reading or writing. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The AVF
determined that 329 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 1994 17 34 46 3352

Inapplicable 0 6 323 0 0 0 329

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 199 577 545 245 172 99 161 332 137 36 252 298 299 3352

Inappl 14 72 135 3 0 0 5 1 0 0 0 77 22 329

Wdrn 0 1 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

A39005G B97102E BC3009B CD2A62D CD2A63A CD2A63B
CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C CD2A66D
CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A CD2A76B
CD2AT6C CD2A76D CD2A81G CD2A83G CD2A84M CD2A84N
CD2B15C CD5007B CD50110 CD7105A CD7203B CD7204B
CD7205C CD7205D CE2107I CE3111C CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they maKe use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 329 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..Y C45321L..Y
C45421L..Y C45521L..Z C45524L..Z C45621L..Z
C45641L..Y C46012L..Z

b. C35702B and B86001U are not applicable because this implementation

3-2

TEST INFORMATION

supports no predefined type LONGFLOAT.

c. The following 16 tests are not applicable because this implementation
does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

d. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicaoie
because the value of SYSTEM.MAXMANTISSA is less than 47.

e. C86001F is not applicable for this implementation because, the package
TEXT 10 is dependent upon package SYSTEM. This test recompiles package
SYSTEM, making package TEXT_10, and hence package REPORT, obsolete.

f. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

g. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

h. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

i. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types.

j. CD2A61I and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

k. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

1. CD2A91A..E (5 tests), CD5012J, CD5013S, and CD5014S are not applicable
because this implementation does not support size clauses for tasks or
task types.

m. The following 42 tests are not applicable because this implementation
does not support an address clause when a dynamic address is applied to
a variable requiring initialization:

CD5003B..H CD5011A..H CD5011L..N CD5011Q
CD5011R CD5012A..I CD5012L CD5013B
CD5013D CD5013F CD5013H CD5013L
CD5013N CD5013R CD5014T..A

3-3

TEST INFORMATION

n. CE2102D is inapplicable because this implementation supports CREATE
with IN-FILE mode for SEQUENTIAL_ID.

o. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIAL_10.

p. CE2102F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECT IO.

q. CE21021 is inapplicable because this implementation supports CREATE
with INFILE mode for DIRECT_10.

r. CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECT IO.

s. CE2102N is inapplicable because this implementation supports OPEN with
INFILE mode for SEQUENTIAL_10.

t. CE21020 is inapplicable because this implementation supports RESET with
INFILE mode for SEQUENTIALIO.

u. CE2102P is inapplicable because this implementation supports OPEN with
OUT FILE mode for SEQUENTIAL_10.

v. CE2102Q is inapplicable because this implementation supports RESET with
OUTFILE mode for SEQUENTIAL 10.

w. CE2102R is inapplicable because this implementation supports OPEN with
INOUT FILE mode for DIRECTIO.

x. CE2102S is inapplicable because this implementation supports RESET with
INOUTFILE mode for DIRECTIO.

y. CE2102T is inapplicable because this implementation supports OPEN with
IN FILE mode for DIRECT IO.

z. CE2102U is inapplicable because this implementation supports RESET with
IN FILE mode for DIRECT IO.

aa. CE2102V is inapplicable because this implementation supports open with
OUT FILE mode for DIRECTIO.

ab. CE2102W is inapplicable because this implementation supports RESET with
OUT FILE mode for DIRECTIO.

ac. CE3102E is inapplicable because this implementation supports CREATE
with INFILE mode for text files.

ad. CE3102F is inapplicable because this implementation supports RESET for
text files.

ae. CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

3-4

TEST INFORMATION

af. CE3102I is inapplicable because this implementation supports CREATE
with OUTFILE mode for text files.

ag. CE3102J is inapplicable because this implementation supports OPEN with
INFILE mode for text files.

ah. CE3102K is inapplicable because this implementation supports OPEN with
OUTFILE mode for text files.

ai. CE3115A is not applicable because resetting of an external file with
OUT FILE mode is not supported with multiple internal files associated
with the same external file when they have different modes.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,

or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 10 tests.

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B38009A B38009B
B41202A B91001H BC1303F BC3OO5B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
VAda-110-2323 was submitted to the AVF by the applicant for review. Analysis of
these results demonstrated that the compiler successfully passed all applicable
tests, and the compiler exhibited the expected behavior on all inapplicable
tests.

3-5

TEST INFORMATION

3.7.2 Test Method

Testing of the VAda-110-2323 using ACVC Version 1.10 was conducted on-site by a
validation team frcm the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and software
components:

Host computer: Sequent Balance 8000
Host operating system: Sequent Dynix, Release 3.0.4
Target computer: Sequent Balance 8000
Target operating system: Sequent Release 3.0.4
Compiler: VAda-110-2323, Version 5.5

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the Sequent Balance 8000. Results
were printed from the host computer.

The compiler was tested using command scripts provided by Verdix Corporation and
reviewed by the validation team. The compiler was tested using all default
option settings except for the following:

OPTION EFFECT

-w suppress generation of warning messages.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-6

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Aloha OR and was completed on 16 Feb 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

Verdix Corporation has submitted the following Declaration
of Conformance concerning the VAda-11O-2323.

A-1

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Verdix Corporation
Ada Validation Facility: ASD/SCEL, Wright-Patterson AF'B OH 45a33-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: VAda-110-2323, Version 5.5
Host Architecture ISA: Sequent Balance 8000
Host OS and Version: Sequent Dynix, Release 3.0.4
Target Architecture ISA: Sequent Balance 8000
Target OS and Version: Sequent Dynix, Release 3.0.4

Implementor's Declaration

I, the undersigned, representing Verdix Corporation, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler(s) listed in this declaration. I declare that Verdix
Corporation is the owner of record of the Ada language compiler(s) listed
above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for
Ada language compiler(s) listed in this declaration shall be made only in
the owner's corporate name.

- Date:
Verdix Corporation
Stephen F. Zeigler, Vice-President, Ada Products Division

Owner's Declaration

I, the undersigned, representing Verdix Corporation, take full
responsibility for implementation and maintenance of the Ada compiler(s)
listed above, and agree to the public disclosure of the final Validatiz.
Summary Report. I declare that all of the Ada language compilers listed,
and their host/target performance, are in zompliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

.... _ _Date:

Verdix Corporation
Stephen F. Zeigler, Vice-President, Ada Products Division

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the VAda-110-2323, Version 5.5, as described in this
Appendix, are provided by Verdix Corporation. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15 range -16#0.1FFFFFFFFFFFFF# .. 16#0.1FFFFFFFFFFFFF#;
type SHORTFLOAT is digits 6 range -16#0.FFFFFF# .. 16#O.FFFFFF#;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

B-I

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINEONLY Pragma

The INLINE..ONLY pragma, when used in the same way as pragma INLINE, indicates to the compiler
that the subprogram must always be inlined. This pragma also suppresses the generation of a callable
version of the routine which saves code space. If a user erroneously makes an INLINEONLY subpro-
gram recursive a warning message will be emitted and an PROGRAMERROR will be raised at run
time.

1.2. BUILT-IN Pragma

The BUILT IN pragma is used in the implementation of some predefined Ada packages, but provides
no user access. It is used only to implement code bodies for which no actual Ada body can be pro-
vided, for example the MACHINECODE package.

1.3. SHARE-CODE Pragma
The SHARE-CODE pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit.
When the first argument is a generic unit the pragma applies to all instantiations of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
tiation, or overloaded instantiations.

If the second argument is TRUE the compiler will cry to share code generated for a generic instantia-
tion with code generated for other instantiations of the same generic. When the second argument is
FALSE each instantiation will get a unique copy of the generated code. The extent to which code is
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

The name pragma SHARE3ODY is also recognized by the implementation and has the same effect as
SHARE_CODE. It is included for compatability with earlier versions of VADS.

1.4. NOIMAGE Pragma
The pragma suppresses the generation of the image array used for the IMAGE attribute of enumeration
types. This eliminates the overhead required to store the array in the executable image. An attempt to
use the IMAGE attribute on a type whose image array has been suppressed will result in a compilation
warning and PROGRAMERROR raised at run time.

1.5. EXTERNALNAME Pragma

The EXTERNALNAME pragma takes the name of a subprogram or variable defined in Ada and
allows the user to specify a different external name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification.

B-2

1.6. INTERFACE-NAME Pragma
The INTERFACENAME pragma takes the name of a a variable or subprogram defined in another
language and allows it to be rrrenced directly in Ada. The pragma will replace all occurrences of the
variable or subprogram name with an external reference to the second, link-argument. The pragma is
allowed at the place of a declarative item in a package specification and must apply to an object or sub-
program declared earlier in the same package specification. The object must be declared as a scalar or
an access type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICIT-CODE Pragma
Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is
ON.

1.8. OPTIMIZE_CODE Pragma
Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies whether the code should be optimized by the compiler. The
default is ON. When OFF is specified, the compiler will generate the code as specified.
2. Implementation of Predefined Pragmas

2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. [NLINE
This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE
This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS attribute.

2.5. LIST
This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORYSIZE
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. NON REENTRANT
This pragma takes one argument which can be the name of either a library subprogram or a subprogram
declared immediately within a library package spec or body. It indicates to the compiler that the sub-
program will not be called recursively allowing the compiler to perform specific optimizations. The
pragma can be applied to a subprogram or a set of overloaded subprograsm within a package spec or

B-3

package body.

2.8. NOTELABORATED
This pragma can only appear in a library package specification. It indicates that the package will not
be elaborated because it is either part of the RTS, a configuration package or an Ada package that is
referenced from a language other than Ada. The presence of this pragma suppresses the generation of
elaboration code and issues warnings if elaboration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.10. PACK
This pragma will cause the compiler to choose a non-aligned representation for composite types. It will
not causes objects to be packed at the bit level.

2.11. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.12. PASSIVE
The pragma has three forms:

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task type declared immediately within a library
package spec or body. The pragma directs the compiler to optimize certain tasking operations. It is
possible that the statements in a task body will prevent the intended optimization, in these cases a warn-
ing will be generated at compile time and will raise TASKINGERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.14. SHARED
This pragma is recognized by the implementation but has no effect.

2.15. STORAGE_UNIT

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS
This pragma is implemented as described, except that RANGE-CHECK and DIVISIONCHECK can-
not be supressed.

2.17. SYSTEMNAME
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.
3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a label, or an entry:

B-4

This attribute denotes the effective address of the first of the storage units allocated to P. For a subpro-
gram, package, task unit, or label, it refers to the address of the machine code associated with the
corresponding body or statement. For an entry for which an address clause has been given, it refers to
the corresponding hardware interrupt The attribute is of the type OPERAND defined in the package
MtACHMNECODE. The attribute is only allowed within a machine code procedure.

See section F.4.8 for more information on die use of this atribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

4. Specification Of Package SYSTEM

Package SYSTEM

type NA% is I balane.yuix 1

SYSTEM-NAW : constant N"E :- baiane..dyuaz;

STORAM-UNIT :constant :- 8:
NEMCRY_.SIZE constant :e 6.777_216;

.Syst m.Dopoudent Namd Numbers

MaI.-INT constant : .21..47_.483_647 1 ;
MWJLI NT :consat 21 .. 47.483.647;
N4X..DlITS cnustaut 1- iS
MhX..MAIISSA constant !- 31;
FINE-DELTA :contrast 2.0-*(-31);
TICK constant 0.01:

.Other System-dependent Declarations

subtype PRIORITY is IN'TEGER rango 0 .. 99:

?4X.RECSIZ intger :-64'1024;

type ADDESS is phiestc;

NDADDR: cons taut ADDESS;

fnuetiou PHYSICALAOESS(I: INJTEGER) rot-ro ADDRESS;
Isueion ALAW-arIA. 5: ADDESS) return BOOLEANd;
Itue: A1R.LTA.: ADCESS) ::,t::: BOLEAN
Isue io ADRG B: ADDESS)rtn BOOLEAN:
runct ion ADR.L(A. 8: ADDESS) return BOLEAN:
tun:: i:: ADR-.DIPP(A, B: ADDESS) return lINTEGER:
Isucio INCADOR A: ADDRESS: INCR: INTEGER) returna ADDRESS.
fuct ion DEC~tADD(A: ADDESS: DE~t: INTISGER) return ADDESS;

(u~in>A. A:DOES S) ret:rn BOOLZAN r~suADRGT;
<sutin (A. :ADDRESS) re n BOOLEAN rento ADDRLT:

functin '>-(A, 8: ADDRESS) return BOOLEAN reusimsaAD-E

Ise to: t<m'A. B: ADSS) return BOLEAN renties AD.E;
(suet io -*(A. 8: ADORES S) return INTEGER ran msa ADRDIFP;

(sc~u .A: ADDESS; INCR: INTEGER) retsrn ADDRESS r ox:m IyCRAMR:
fscio :,:(A; ADESS; OXR: I NTEGER) eunADDRESS rea EX-DR

p r aot iniue(PHYSICALACESS);
p ras~ itiine(ADRGl);
p rs an inins(ADR..LT);
pfagm i aIi me (ADDRi) ;
pragm inline(ADDR.LE);
prosm inline(ADR.IFF):

piram jul ine(DEU~t.AD)

pr a s a

t ype ADDRESS is ne. INTEGER:

no-sddr: ton-tent address :-0:

end SYSTEM;

5. Restrictions On Representation Clauses

B-5

5.1. Pragma PACK

In the absence of pragma PACK record components are padded so as to provide for efficient access by
the target hardware, pragma PACK applied to a record eliminate the padding where possible. Pragma
PACK has no other effect on the storage allocated for record components a record representation is
required.

5.2. Size Clauses

For scalar types a representation clause will pack to the number of bits required to represent the range
of the subtype. A size clause applied to a record type will not cause packing of components; an expli-
cit record representation clause must be given to specify the packing of the components. A size clause
applied to a record type will cause packing of components only when the component type is a discrete
type. An error will be issued if there is insufficient space allocated. The SIZE attribute is not sup-
ported for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since default initialization of a variable requires
evaluation of the variable address elaboration ordering requirements prohibit inititalizadon of a variables
which have addre clauses. The specified address indicates the physical address associated with the
variable.

5.4. Interrupts

Interupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions
Machine code insertions are supported.

The genera. definition of the package MACHINECODE provides an assembly language interface for
the target machine. It provides the necessary record type(s) needed in the code statement, an enumera-
tion type of all the opcode mneumonics, a set of register definitions, and a set of addressing mode func-
tions.

The general syntax of a machine code statement is as follows:

CODE.n'(opcode, operand [, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.

The format is as follows:

CODE_N'(opcode, (operand (, operand)));

For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)).

CODE_0'(op => opcode);

B -6

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An operand can only be an entity defined in MACHINECODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINECODE must be static expressions, stnng
literals, or the functions defined in MACHINECODE. The 'REF attribute may not be used as an argu-
ment in any of these functions.

Inline expansion of machine code procedures is supponed.

6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address expressions in an address clause are interpreted as physical addresses.

S. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages
Instantiations of DIRECT 10 use the value MAX RECSIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENTTYPE'SIZE is very large, MAX_REC_SIZE is used
instead. MAXRECORD_SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECTIO to provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE -UNIT bits. DIRECT_1O will raise USEERROR if
MAXREC-SIZE exceeds this absolute limit.
Instantiations of SEQUENTIAL_10 use the value MAXREC_SIZE as the record size (expressed in
STORAGEUNITS) when the size of ELEMENTTYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENTTYPE'SIZE is very large, MAXRECSIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating INTEGERIO to provide an upper limit on the record size. SEQUENTIAL-IO imposes no
limit on MAXRECSIZE.

11. Implementation Limits
The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits are available to every program.

11.1. Line Length
The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.

B-7

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4,00,000 x STORAGEUNITS. The maximum
size of a statically sized record type is 4,000,000 x STORAGEUNITS. A record type or array type
declaration that exceeds these-imits will generate a warning message.

11.3. Default Stack Size for Tasks
In the absence of an explicit STORAGE-SIZE length specification every task except the main program
is allocated a fixed size stack of 10,240 STORAGE-UNITS. This is he value returned by
T'STORAGESIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE-SIZE length attribute the default collection size for an access
type is 100 times the size of the designated type. This is the value returned by T'STORAGESIZE for
an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGEUNITS for objects declared statically within a
compilation uniL If this value is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

8-8

APPENDIX C

TEST PARAMETERS.

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGIDI (J..498=>'Al, 499=>']')

An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIGID2 (I..498=>'A', 499=>12')

An identifier the size of the
maximum input line length which
is identical to $BIG IDl except
for the last character.

$BIGID3 (1..249:>'A', 250:>'3', 251..499=>'Al)

An identifier the size of the
maximum input line length which
is identical to $BIGID4 except
for a character near the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (I.249=>'A', 250=>14, 251..499=>'A)

An identifier the size of the
maximum input line length which
is identical to $BIGID3 except
for a character near the middle.

$BIG INT LIT (1..496=>'0', 497..499=>"298")

An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REALLIT (1..493=>'0', 494..499=>"169.0E1")

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRINGI (I=> '"I, 2..200=>'A', 201=>'"'1)

A string literal which when
catenated with $BIG STRING2
yields the image of $BIGID1.

$BIG STRING2 (I=> I'"', 2..300=>'A', 301=>'l',

A string literal which when 302=>'"')

catenated to the end of
$BIGSTRING1 yields the image of

$BIGIDI.

$BLANKS (I..479=>' ')
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2147483647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEM SIZE 16777216

An integer literal whose value
is SYSTEM.MEMORY SIZE.

$DEFAULTSTOR UNIT 8
An intege-r literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULTSYSNAME BALANCEDYNIX
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC w 0.00000000465612873077392578125
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELDLAST 214783647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXED NAME NOSUCHTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHAN DURATION BASE LAST 10000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 99
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEI /ILLEGAL/FILENAME/2}]$%2102C.DAT
An external file name which
contains invalid characters.

$ILLEGAL EXTERNALFILENAME2 /ILLEGAL/FILENAME/2}]CE2102C*.DAT
An external file name which
is too long.

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 2147483648

A universal integer literFl
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHAN DURATIONBASEFIRST -10000000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

*MAXDIGITS 15
Maximum digits supported for
floating-point types.

SMAX IN LEN 499
Maximum input line length
permitted by the implementation.

$MAX_INT 2114714836147
A universal integer literal

whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 2147483648
A unive-rsal integer literal
whose value is SYSTEM.MAXINT+1.

$MAXLEN INT BASED LITERAL (I..2=>"2:" ,3..496=>'0',1497.. 499=>"11:")
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be $MAXINLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL (1..3=>"16:", 4..495=>'O,

A universal real based literal 496..499=>"F.E:")

whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be $MAXINLEN long.

$MAX STRING LITERAL (1=> '"', 2.498=>'A', 499=>'"')
A string literal of size
$MAX.IN LEN, including the quote
charaiters.

$MININT -2 147'4836J48
A universal integer literal

whose value is SYSTEM.MIN INT.

$MIN TASK SIZE 32
An integer literal whose value

is the number of bits required

to hold a task object which has
no entries, no declarations, and

"NULL;" as the only statement in

its body.

$NAME TINYINTEGER

A name of a predefined numeric
type other than FLOAT, INTEGER,

SHORTFLOAT, SHORTINTEGER,

LONGFLOAT, or LONGINTEGER.

$NAME LIST BALANCEDYNIX
A list of enumeration literals

in the type SYSTEM.NAME,

separated by commas.

$NEG BASED INT 16#FFFFFFFD#

A based integer literal whose
highest order nonzero bit

falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NEWMEMSIZE 16777216

An integer literal whose value
is a permitted argument for

pragma MEMORYSIZE, other than

$DEFAULT_MENSIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and MeaninE Value

$NEW STOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGEUNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYSNAME BALANCEDYNIX
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that

type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 36 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84M..N, and CD5;iIO (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

D-1

WITHDRAWN TESTS

CD2B15C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK --particular instances of change may be less (line 29).

CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

CE21071: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,
132, and 136).

CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-2

